Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission

نویسندگان

  • Yann Kerr
  • Philippe Waldteufel
  • Jean-Pierre Wigneron
  • Jean-Michel Martinuzzi
  • Jordi Font
  • Michael Berger
چکیده

Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of using antenna synthesis methods has been investigated. Such a system, relying on a deployable structure, has now proved to be feasible and has led to the Soil Moisture and Ocean Salinity (SMOS) mission, which is described in this paper. The main objective of the SMOS mission is to deliver key variables of the land surfaces (soil moisture fields), and of ocean surfaces (sea surface salinity fields). The SMOS mission is based on a dual polarized L-band radiometer using aperture synthesis (two-dimensional [2-D] interferometer) so as to achieve a ground resolution of 50 km at the swath edges coupled with multiangular acquisitions. The radiometer will enable frequent and global coverage of the globe and deliver surface soil moisture fields over land and sea surface salinity over the oceans. The SMOS mission was proposed to the European Space Agency (ESA) in the framework of the Earth Explorer Opportunity Missions. It was selected for a tentative launch in 2005. The goal of this paper is to present the main aspects of the baseline mission1 and describe how soil moisture will be retrieved from SMOS data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sea Surface Salinity Retrieval within the ESA Soil Moisture and Ocean Salinity (SMOS) Mission

The SMOS (Soil Moisture and Ocean Salinity) mission will provide from 2007 onwards global maps of soil moisture over land and sea surface salinity over ocean. The radiometry group of the Technical University of Catalonia (UPC) in Barcelona has been involved either in the definition of the SMOS single payload, MIRAS (Microwave Imaging Radiometer by Aperture Synthesis), or in the organization of ...

متن کامل

Overview of Smos Retrievals over Land

The first dedicated Soil Moisture and Ocean Salinity mission (SMOS) has been launched by the European Space Agency on November 2, 2009. One novel aspect of this innovative spaceborne sensor is the use of the multi incidence angle observations for soil moisture retrieval [1]. The mission will deliver soil moisture products at least once every 3 day morning and evening at a 50 km spatial resoluti...

متن کامل

Mission Objectives and Scientific Requirements of the Soil Moisture and Ocean Salinity (SMOS)

The main scientific objectives of the Soil Moisture and Ocean Salinity (SMOS) mission are to observe two crucial variables: soil moisture over land surface and sea surface salinity over oceans. The mission should also provide information on root zone soil moisture and vegetation and contribute to significant research in the field of the cryosphere SMOS is a demonstrator with broad and ambitious...

متن کامل

Intercomparison of Surface Roughness Parameterizations for Soil Moisture Retrieval

Soil moisture plays a key role in many hydrological and agricultural processes because it controls the water and heat energy exchange between the earth and the atmosphere. Addressing the need for routine global surface soil moisture maps, the European Space Agency (ESA) launched the Soil Moisture and Ocean Salinity (SMOS) mission in 2009. It provides L-band microwave brightness temperature obse...

متن کامل

Modeling approaches to assimilating L band passive microwave observations over land surfaces

Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001